

Illustration: may differ from specified module

Compact CHP ready for connection, mainly consisting of

- serially manufactured Industrial-Gas-Otto-engine
- air-cooled synchronous generator
- waste-gas heat exchanger integrated in primary cooling circuit
- oil reservoir with automatic oil feeding
- control cabinet with programmable controller and operating unit
- gas train

Integrated heat exchanger basket, mainly consisting of

- expansion tank in motor circuit and mixture circuit
- relief value in motor circuit, mixture circuit and heater circuit
- filling valves, cleanout valves and exhaust valves
- plate heat exchanger
- pumps for motor circuit, mixture circuit and heater circuit
- 3-way mixing valve for return temperature increase

Water and gas connections are executed with compensators.

Motor and generator are connected through a pluggable elastic metal plastics coupler to compensate radial offest, axial offset or angular offset. It is mounted on a framework vibration-cushionedly. Furthermor the framework is uncoupled through oscillation decoupling elements.

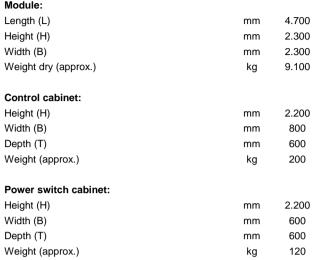
The control cabinet ist executed as a separate unit. All regulation and control functions as well as control elements are part of the control cabinet. Assisted by a menu-navigated display performace data and state data could be readed and adjusted easily.

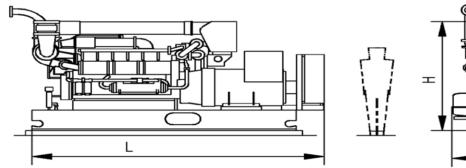
The drive of the CHP is caused by a water-cooled, supercharged Otto-Gas-Engine. It is stationary engine designed for permanent operation. A micorprocessor-controlled ignition ensures an optimal adaption of the ignition point and the ignition energy to the gas quality (methane number).

Lambda regulation is carried out without a lambda sensor using a calculation program which sets the optimal lambda value for each operating mode using the actual output, charging pressure and mixture temperature values.

Besides an exceedingly high electrical efficiency, a double-staged mixture cooling, including a low temperature circuit and a high temperature circuit, leads to an ideal usage of thermal power from the mixture heat.

Technical specification

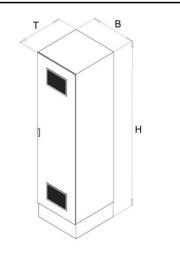

Engine data	Hz	400	Engine utilities				
Mixture cooling to	°C	55	Lubricate consumption			kg/h	0,19
RPM	1/min	1.500	Filling capacity lubricant min./max.			I	216
ISO standard power (mech.)	kW	657					
Arrangement of cylinders		V 70°	Filling capacity cooling water		I	-	
Number of cylinders		12	Operating pressure (max.)		bar	2,5	
Bore	mm	135	Cooling water recirculated quantity (min. / max.)		m³/h	32,1	
Stroke	mm	170	Cooling water temperature (inflow)		°C	80,4	
Swept volume	I	29,2	Cooling water temperature (exit)			°C	85,8
			Balance (inflow/exit, max.)			К	5,4
direction of rotation (look on balance wheel)		links					
			Mixture inflow temperature after damper (max.)		er (max.)	°C	55
compression ratio	3	12,5:1	Mixture cooling water, in	flow temperat	ure low	°C	50
average effective pressure	bar	18,0	temperature circuit (max.)				
average piston speed	m/s	8,5	Mixture cooling water recirculated quantity low			m³/h	15
			temperature circuit (max.)				
Power data	Hz	50					
	0/	100	Efficiencies	0/	100		
Load	%	100	-	%	100	75	50
Ignition timing	grad	variabel	Electrical	%	40,1	39,0	36,8
ISO standard power (mech.)	kW	657	Mechanical	%	41,3	40,5	38,6
Electrical power	kW el	637	Thermal	%	42,3	44,7	47,2
			Total (el. + th.)	%	82,4	83,7	84
Cooling water heat	kW	272					
Low temperature mixture heat	kW	40	Power number		0,95	0,87	0,78
High temperature mixture heat	kW	108					
Waste gas heat up to 180°C	kW	292	Mass flows and volume	e flows			
useable thermal power at 180°C	kW	672					
radiant heat of module (max.)	kW	101	Combustion air mass flor	w		kg/h	3.157
nominal power	kW	1.589	Combustion air volume flow		Nm³/h	2.442	
Fuel consumption (mech.)	kWh/kWh	2,42	Supply air volume flow			m³/h	24.737
Fuel consumption (el.)	Wh/kWh el،	2,49					
			Combustible mass flow			kg/h	351
Temperatures and pressures			Combustible volume flow	V		m³/h	265
Waste gas temperature after turbine	°C	450	Waste gas mass flow, w	ot		kg/h	3.441
÷ .		450 60	-			-	3.184
exhaus back pressure (max.)	mbar	60	Waste gas mass flow, dry			kg/h	
Heating water return temperature (may)	*	75	Waste gas volume flow, wet			m³/h m³/h	2.676
Heating water return temperature (max.)	°C	75	Waste gas volume flow,	ary		m³/h	2.368
Heating water flow temperature (max.)	°C	95			00.400		
Pressure decrease heating circuit (max.)	mbar	200	Heating water volume flo	w (max.)		m³/h	38,492
maximum backpressure at the air intake	mbar	10	Technical basic conditions				
Emission value at 5% residual oxygen			Power conditions acc. to	DIN-ISO-304	6		
			Norm conditions: air pressure: 1000mbar,				
NOx	mg/Nm³	< 500	air temperature: 25°C or 295 K, rel. humidity: 30%				
со	mg/Nm ³	< 1.000	Gasquality according "TA 1000-0300"				
	5		All data are related to full load engine running at denoted				
			media temperatures and are subject to technical advancements.				
			Equipment as well as installation systems have to meet all				
			Jenbacher technical instructions.				
			When installed > 500 m and/or with intake air temperatures > 30 $^{\circ}$ C,				




Generator data	Main dimensions and weights		
Manufacturer		Leroy-Somer	Module:
Туре		LSAC 49.1 L9	Length (L)
Power	kVA	792	Height (H)
Voltage	V	400	Width (B)
Frequency	Hz	50	Weight dry (approx.)
Rated Speed	1/min	1500	
Nominal current at Cos φ = 0,8	А	1.133	Control cabinet:
Cos φ		1	Height (H)
Efficiency (full load) at $\cos \varphi = 1$	%	96,9	Width (B)
Efficiency (full load) at $\cos \varphi = 0.8$	%	95,6	Depth (T)
Reactance Xd	p.u.	2,07	Weight (approx.)
Reactance X'd	p.u.	0,13	
Reactance X [*] d	p.u.	0,1	Power switch cabinet:
Mass moment of inertia	kgm²	11,31	Height (H)
Stator circuit		Stern	Width (B)
Ambient air temperature	°C	40	Depth (T)
Protection class		IP 23	Weight (approx.)

The Cos Phi can be adjusted in between 0,8 inductive (lagging) and 0,95 capacitive (leading). The precise adjustment value however should be decided by the Utility company.

Modul:



Control cabinet:

Technical specification avus500b -D1338 Version 1.2 (JGE) 07.07.2014